DISCHARGE OF A POWDER — AIR MIXTURE WITH A HIGH
CONCENTRATION OF POWDER FROM A VESSEL
UNDER PRESSURE

V. B. Reznikov UDC 622.648

The discharge of a mixture through a short spout is analyzed. A formula for deter-
mining the velocity of particles has been derived and experimentally checked. The con-
ditions of critical discharge are analyzed and a formula is proposed for determining the
critical air velocity in a mixed stream. »

Not enough consideration has been given to pneumatic transport of powders in a high-concentration
stream. No procedure for designing such pneumatic transport exists at present, which is explained by the
novelty of this method on the one hand and by the overall status of the multicomponent flow theory {1].

In order to develop a design procedure, it is necessary to answer several questions concerning the
ratio of component velocities and the total friction losses in the case of a complex transport route. Until
these questions have been finally resolved, it would be of interest to investigate simplified schemes with a
minimum number of unknowns,

The authors consider a device shown in Fig. 1. Compressed air is fed underneath the distributor
grid 2 into a hermetically closed vessel 1 full of powder, whereupon the air and powder mixture discharges
through a short cylindrical spout 3 into a medium at atmospheric pressure. Under steady-state conditions
the pressure py in the vessel as well as the air flow rate Gy and the powder flow rate Gp remain constant,
It is desired to determine the powder discharge velocity.

In order to use the mathematic apparatus available from the theory of continuous media, one re-
places the discrete quantities with continuous ones by the method of space —time averaging [1].

The fundamental equation will be obtained from the Law of Energy Conservation for a steady stream
[2]. The energy per second transmitted through any section of the stream is
Eszp(upi—f—+0—)29+gh)+G (u +£%-m—2a+gh)- (1
A op | 2 B2, 2
Passing to an infinitesimally near section in the stream,
dEp = dOg, (2)
where Qg is the external heat per second supplied to the stream through the walls of the given segment,
From the First Law of Thermodynamics follows
Gy dity -+ Gy duy = dQy -+ dQ; —Gypid (plp)_oapd(p—l), 3)

where dQy is the heat per second dissipated inside the given stream segment and equal to the work of fric-
tion,
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Inserting dQg from (3) and dE,, from (1) into (2), and
considering that
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ay Gy Gy - Assuming, with little error, the expansion of air to be
- , : isothermal when the powder concentration is high [3], we then
Fig. 1. Schematic diagram of the ap- integrate Eq. @) from the stream section inside the vessel,
paratus, where wa = wp =0, h =0, p = pg fo an arbitrary section:
: Py 1—p . a)r‘; @ _ .
ﬁRT_ln7+ —ép—(pk—p)—ﬂyﬂﬂ—ﬁ)—§P+gh+L,-,- (5)

Here L is the energy loss per kilogram of mixture.

We note that the left-hand side of Eq. (5) physically signifies the useful external work per kilogram
of mixture, which is determined only by the pressure drop and the quantity 8. Into the right-hand side of
Eq. (5) may, generally, be entered any energy losses, also those occurring when the velocities and the
concentrations of the components are distributed arbitrarily over a stream section,

In our problem expression (5) can be simplified by the omission of the small quantities gh, B(wh/2),
and L. Thus, for py > 1.5 atm abs., p =1 atm abs., and pp ~ 3000 kg/m? the left-hand side amounts to
more than 120 m?/sec? with gh less than 5 m?/sec? (when the fluidization zone in the vessel is not higher
than 0.5 m above the spout exit section). With w, ~ 2wp and 8 < 0.01, according to test data, we find that
Bu? /2 amounts tonot more than 49 of (1—B)(w?/2). The friction losses have been neglected here, on the
basis of the analogy to a discharge of homogeneous fluids through spouts.

With p; denoting the spout exit pressure, which can be higher than the ambient pressure, we have
then :
B orig P Px—Pe )
@ - ~——=RTIn I 6
w2 [ gRTIn T , (®)

This expression is, except for the factor (1—p), identical to the formula in [4] for gas—liquid mix~-
tures with equal velocities of the components.

Let us compare formula (6) with other known expressions for the discharge velocity of a pseudofluid
from a vessel under pressure.

Urban in [5] shows the relation

o2 __Pk—DP
P pp(l—gl)’

where g is the porosity at the exit section of the spout.

This formula can be derived by integrating @) with the three last terms on the Jeft-hand side omitted
and with G5 = g;p3Fwy and Gp = (1 —&;)ppwpF, assuming here that wy = wp and F = const, With this as-
sumption, expression @) will yield Urban’s formula instead of formula (6).

We note that, according to the results shown here, subsequently, the condition of equal velocities does
not apply. The probability and the possibility of satisfying the second condition (of a constant stream cross-
section area) are small, because the flowing mixture forms a funnel inside the vessel, especially at high
pressures, and the test data indicate that the velocity of particles is quite high already at the spout en-
trance,
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On the basis of a test data evaluation, Massimilla [6] has derived a formula for the flow rate of fluidized
powder discharging from a vessel. It has been shown in [7] that the discharge velocity in Massimilla's for-
mula is determined by the relation

(_02 =9 pk—pl
P (1mek)’pp’

where € is the porosity of the pseudofluid inside the vessel.

The last expression can be obtained by integrating the equation of energy conservation for some
constant-density fluid:
2 d
d ( 99) = P

2] T—gley’

with (1 —€R)Pp considered constant, Since, during discharge, the density of a mixture must vary with the
pressure, hence the assumption of a constant density renders Massimilla's formula applicable to low pres-
sures only.

In comparison with the formulas given by Massimilla and Urban, we note that formula (8), not being
limited with regard to pressure nor requiring a constant channel section and equal velocities of the com-
ponents, is more general, Since friction is disregarded in formula (6) while the pressure on the mixture
components is assumed equal and independent of the distance between particles, this expression is appli-
cable only to a complete fluidized powder around the exit opening.

We note that, in order to calculate the discharge effectiveness, one must know not only wp but also
gy, the latter being a function of the component velocities ratio. Inasmuch as the laws governing this ratio
in a high-concentration stream have not yet been sufficiently well explored, such calculations are difficult,

The validity of formula (6) was checked experimentally on the apparatus shown in Fig. 1,

The hermetically closed vessel 1 contained approximately 70 kg of powder concentrate with an average
grain size 58 p and a density of 3200 kg/m?. The cylindrical spout 3 had the minimum necessary (struc-
turally) length of 85 mm. The diameter of the exit channel was made small, 9 mm only, in order to suf-
ficiently extend the steady-state discharge time. The upper spout end was positioned at 30 mm from the
plane of the gas distributor mesh, the latter made of technical-grade felt. Oscillographic measurements in-
cluded pressure py in the vessel, pressure p; at the spout exit section, air flow rate G4, change in the
vessel weight, and jet momentum at the exit section. The last item was measured with a strain—gage strip
as in [8].

For measuring py, at 1.5 mm from the exit section, holes were provided in the channel connecting
it to the test chamber. The ambient pressure was at atmospheric level, the powder temperature was T
~ 290°K.

The test results are shown in Table 1 {columns 2-6).

The theoretical values of velocity wpT of particles at the exit section have been calculated by formula
(6) from the test values of py, p;, 2nd g, and they are listed in column 13. A comparison between wp and wpT val-
ues shows a satisfactory agreement at pressures py > 2.5-10% N/m?. The wide divergence at lower pres-
sures (tests No. 1 and No. 2) can, apparently, be explained by the more significant stray energy losses at
the entrance, for example.

We must emphasize an important, in our opinion, fact: in the tests with py > 2.5-10° N/m?, p, > p,.
This kind of inequality in a stream of "pure" air would apply the critical discharge velocity, which is equal
to the velocity of sound. Since in our tests the air velocity was much lower than the velocity of sound, it
would be interesting to estimate the critical air velocity in the mixture.

Such a velocity, assuming that the stream fills the entire channel section, can be determined on the
basis of the following considerations,

In passage along the channel into an infinitesimally near section, the volume per second of mixture
increase by dV, due to the increment of air volume. In order to pass this additional volume through the
section, the air velocity and other related to it parameters must also change. The change in air velocity
depends on the part of the pressure head dp used for acceleration. The maximum possible increment of
volume per second which is due to the increment of velocity will occur when there are no losses and the
entire pressure head dp is used for acceleration. This maximum possible increment of volume per second
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TABLE 1. Test Results and Calculated Values
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will be denoted by dV}n. Obviously, flow can occur only when dV]B[1 > dVy,, because part of dp is lost on.
friction, lift, etc. The limiting case dV, = dVy, corresponds to the critical mode. If such a flow mode
were to prevail at some intermediate section of the cylindrical channel, therefore, then a farther flow would
be impossible. In order to determine the critical velocity of mixture components, therefore, it is neces-
sary to find dV, and dV,, and to equate them,

The volume per second of mixture is

G ¢}
Vi =P +—2 (M
oy | Pa
where
G, = awaEF (8)
and
Gp:ppmp(l——s)F. (9)

From (7) we find
&V = Gyd (—1)
0q

or, considering (8),

dp
V= —ogF =2 (10)
Pa

In order to determine dVy,, we write (7) with (8) and (9) as
Vm=w,eF +o,(l —8)F,
and from here, assuming wpF (A —e) = const, we find
AV, = eFdo,+ a,d(eF).

Into this expression we insert dw, found from the equation of momentum change for the mixture, without
losses,

G,d 0y + Gyd o, = —FdP.

After this substitution and transformations with 8) and (9) taken into account, we obtain

V= o,d (e F) -+

1
= —_ — 11
of [—Fdp oo, F (1 s)dmp]. (11

Inserting into (11)

F{l — e)dwp.—_——mpd[(l —e) Fl,
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which follows from (9), and introducing wp = wa/k, where k is a variable gquantity (function of the flow
parameters), we then equate (10) and (11). Appropriate transformations will yield the critical, i.e., the
maximum possible velocity wy = wep: '

2 dp -
Qa,cr= — dF _p (12)

d(eny) -+ 0 F+—kgl(1-s)€§+d(1_a)] :

For the case where € =1 and F = const (flow of "pure" air through a cylindrical channel), expression (12)
becomes the well-known formula

where gy denotes the velocity of sound in air,

Separating (8) and (9), then letting u = Gp/ Gy, we obtain
fp . )
Pp -+ kup, (13)

We now insert (13) into (12), let dF =0 (our test conditions), then divide the numerator and the denominator
of (12) by dp. After differentiation with dp/dpy =@} and appropriate transformations, we obtain

g =

g, cr = o (_1_8@ i (19
B g )dp
Letting k = const, we have
ak | o Rup, &
m:’cr:k—i—@ \1 " Pp ) '

The last expression differs from the approximate formula obtained in [3] for the critical velocity by the
factor in parenthesis.

When k =1, expression (14) yields

2
L)
©a,cr== da __1,+_F;p_ = aZ? (15)

Expression (15) for the critical air velocity in a mixture is identical to the formula for the velocity of
sound in a two-component mixture with equal velocities of the components [9, 10].

We note that calculations in [9] show the velocity of sound in the mixture to be very low when k = 1.
Thus, wa cr = 12.1 m/sec at € = 0.7, p = 1 atm abs., and Pp = 3200 kg/m? (apatite concentrate).

Assuming that the air velocity was critical in our tests, where p; > p,, and inserting into (14) the
value of air velocity as well as the values of other quantities obtained in these tests, we find that dk/dp is
negative and, consequently, the ratio w,/ wp increases toward the exit section.

NOTATION
Pk is the pressure inside the vessel;
Py is the pressure at the spout exit;
joN is the ambient pressure;
p is the pressure at any stream section;
G4 is the rate (per second) of air flow into the vessel;
Gy is the rate (per second) of air flow in the mixture;
Gp is the rate (per second) of particle flow;

Em is the energy of mixture;
is the internal energy (per kilogram) of particles;
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ug is the internal energy (per kilogram) of air;
Pp is the density of powder material;
Pa is the density of air;
wp is the true velocity of particles;
wa is the true velocity of air;
g is the gravitational acceleration;
h is the height;
Qe is the external heat;
Qf is the heat of friction;
L is the energy loss (per kilogram) in mixture;
R is the gas constant;
T is the absolute temperature;
S is the jet momentum;
F is the area of channel cross section;
] is the porosity (ratio of air volume to total volume of mixture);
Vm is the per second volume of mixture;
wa,cr is the critical velocity of air in mixture;
ag is the velocity of sound in mixture;
B =Gy / Ga.
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